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German Democratic Republic 
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Abstract. The non-equilibrium Green function technique is applied to derive a quantum 
kinetic equation for transport in quantum wires. Calculations are done for short-range 
impurity scattering neglecting localisation effects. In linear response the expression obtained 
for conductance is equivalent to the Kubo-Greenwood formula. Scattering-induced level 
broadening is included by self-consistent solution for the retarded Green function. For 
typical scattering strengths, level broadening suppresses oscillations of conductance in 
agreement with experimental observations. Width fluctuations of only 2% remarkably 
reduce quantum size effects, in arrays of parallel wires. A non-zero temperature ( T  < 10 K) 
is not limiting for observation of confinement effects in typical samples. 

1. Introduction 

Recently, extremely small conducting structures became technologically available. In 
such structures, one observes deviations from macroscopic transport properties due to 
the non-negligible influence of the wave character of electrons (Imry 1986). Semi- 
conducting samples are of particular interest because of the possibility of changing the 
Fermi energy via the gate voltage and because of their importance for application. Quasi- 
one-dimensional (QID) samples are prepared mainly by imposing a lateral structure onto 
silicon MOSFETS (Warren et a1 1986, Kastner et a1 1987) or onto heterostructures from 
111-V compounds (Smith et a1 1987, Alsmeier et a1 1988, Brinkop et a1 1988). 

Plots of low-temperature conductance measurements show more or less pronounced 
structures with varying gate voltage. The relative fluctuations may be large for transport 
via hopping or resonant tunnelling in the region of strong localisation, lo * L ,  where lo 
and L denote the localisation length and the sample length, respectively (Fowler et a1 
1988). The fluctuations are smaller and of universal magnitude of e2/h in the region of 
weak localisation where electron states are extended over the sample and transport is 
diffusive (Lee eta1 1987). For this case the elastic scattering length 1 satisfies the condition 
1 4 L e lo. The diffusive regime is only apparent if a sufficiently large number N of QID 
subbands is occupied by electrons since lo = NI. If 1 exceeds L ,  transport becomes 
ballistical and quantised steps are observed in the conductance versus gate voltage (van 
Wees et a1 1988, Wharam et a1 1988). These steps have been attributed to contact 
resistance (Imry 1986, Landauer 1987). 
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In this paper we are concerned with the influence of quantum size effects (QSES) in 
the diffusive region of transport. Universal fluctuations have been neglected, a situation 
which is met in arrays of parallel wires where fluctuations due to the sample-specific 
arrangement of impurities average out. This is equivalent to the case where the phase 
coherence length L,  is much smaller than the sample length L .  The condition L* Q L 
(incoherent sample) is also sufficient to neglect the weak localisation correction to the 
average Boltzmann conductance which arises from the Born approximation in the one- 
electron self-energy . If impurities are the dominant sources of scattering the phase 
coherence length is also large compared with the elastic scattering length. Therefore the 
condition 1 Q La Q L ,  lo has to be realised to observe QSES as the main contribution to 
structures in conductance. 

In the weak-scattering limit the QSES should result in a vanishing conductance if the 
Fermi energy coincides with the botton of asubband. This is expected when the scattering 
rate is proportional to the Q1D density of final states. The consequences are large 
oscillations of conductance versus Fermi energy. The small magnitude of QSES found in 
experiments (Warren et a1 1986) indicates that the Boltzmann theory is inadequate for 
decribing these observations. Scattering-induced level broadening has to be included 
into a consistent transport theory for Q1D systems. This has been done in conductivity 
calculations starting from the Kubo-Greenwood formula (Das Sarma and Xie 1987, 
Kearney and Butcher 1987). However, the effects of renormalisation of the spectrum 
have been excluded from the beginning in these calculations and a diagonal approxi- 
mation has been used in the expansion of the Green function with respect to subband 
wavefunctions. 

In the following, a quantum kinetic equation for QiD systems is derived using the 
non-equilibrium Green function technique as introduced by Kadanoff and Baym and 
by Keldysh. In sections 2-5 the theoretical formalism is applied to QiD systems. Section 
6 contains numerical results for dependence of the conductance on Fermi energy for 
different scattering strengths, fluctuations of channel widths and temperatures. 

2. Model 

Consider a quantum wire formed from a degenerate semiconductor of length L, and 
rectangular cross section A = L,L,. The one-electron Hamiltonian of the wire without 
scattering is approximated by a simple one-band effective-mass model: 

H ( J ( f )  = -(n2/2m*)v$ + V,(x)  + H c ( r L )  (1) 
with the potential V J x )  of the electric field applied in the x direction (cf figure 1). We 
assume V,(x) to be decoupled from the confining potential Vc(rL) contained in the 
transverse part of the Hamiltonian: 

H c ( r l )  = - (n2/2m*)vSI + V, ( r1 ) .  (2) 

Confinement results in quantisation of electron states in the two transverse directions 
according to 

H C k l ) V , @ L )  = EeqArL) (3 1 
with discrete quantum numbers a = ( n ,  m) ,  subband energies E,  and real subband 
wavefunctions q,(rL),  The thermodynamic limit is performed in the x direction and, 
consequently, electrons are plane waves along the wire. 
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Figure 1. Schematic representation of the quan- 
tum wire and notations used in the text. 

For sufficiently low temperatures, impurities are the dominant source of scattering. 
They are described by a random scattering potential U(r) for which we use the model of 
Gaussian white noise: 

(U(r)> = 0 (U(r)U(r’))  = g6(r - r’) .  (4) 

The average over all impurity configurations is denoted by ( . . . ) and g is the coupling 
constant. For short-range scatterers of strength Vo,  g = nV’, where n is the volume 
density of scatterers. 

3. Quantum kinetic equations 

Transport equations including quantum effects may be derived by the non-equilibrium 
Green function technique. In this approach the usual perturbation theory is formulated 
in a complex time plane in non-equilibrium. Real-time quantities are obtained by 
analytical continuation which is performed very conveniently by applying the rules of 
Langreth and Wilkins (1972) and Langreth (1976). For the correlation function G< and 
the retarded function GR,  one obtains 

[ G i l  - 2, G‘], - [E‘, GIz = -(i/2)[r, G < ] ,  + (i/2)[2‘,AIT ( 5 )  

Here, [A, B],  denote the anticommutator and commutator, respectively. In the spirit 
of a transport equation 

GC1(rt, r’t’) = 6(r - r’)d(t - t’)[i a/at - h-’HO(r)] (7) 

characterises the driving term in equations ( 5 ) ,  and the right-hand side of equations ( 5 )  
generalises the collision integral. The additional terms on the left-hand side of equations 
( 5 )  describe renormalisation effects beyond the Boltzmann theory. The Dyson equation 
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for the retarded functions is generalised by equations (6). Furthermore we have used 
the definitions 

for the spectral function and 

G(rt, r’t’) = $( GR + GA)(rt, r’t’). (9 )  

Note that only two of equations ( 5 )  and (6) are independent. 
Since we are interested in the average effect of impurity scattering only, equations 

( 5 )  and (6) are written for averaged quantities without using a special notation. As a 
consequence of averaging, translational invariance in x direction is restored. 

Scattering is described by replacing the impurity potential U(r) by a complex non- 
local energy-dependent self-energy Z. In the self-consistent Born approximation it may 
be written as 

2(rt ,  r’t’) = h-’( U(r)  U(r’))G(rt, r’t’) (10) 

which is valid for Z<, ZR and ZA. The self-energy parts ER and ZA can be related to the 
spectral function r and the quantity 2 in the same way as was done in equations (8) and 

In order to calculate the conductance GQw of the quantum wire it is necessary to 
(9).  

determine the current density 

j ( r ,  t )  = -(h/m*)(V, - V+)G‘(rt, r’t)Irr =, (11) 

which is connected with the conductance by 

in a stationary system homogeneous in the x direction. For a constant electric field F, 
the potential difference is given by V, = F,L,. Finally we introduce the particle density 
in the wire per length unit: 

n(x, t )  = -2i d’r, G<(r t ,  rt). 
JA 

4. Equilibrium properties 

In a linear response, carrier transport is determined by the equilibrium properties of the 
spectrum which will be discussed now. 

In a homogeneous quantum wire the equilibrium quantities depend only on the 
relative variables t - t’ and x - x’ but separately on rL and r i  owing to inhomogeneity 
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in the transverse direction. After Fourier transformation of relative variables the 
retarded and advanced Green functions in the absence of scattering are 

(14) G (0) R/A(kx, 0; r l ,  r k )  = 2 q a ( r l ) q a ( r ; ) ( w  - Emk, * io)- '  
LY 

with h&&, = EWk, = E ,  + h2k?/2m*.  The corresponding spectral function 

r l ,  r ; )  = 2JGc q ~ ~ ( ~ l > Q ) a ( ~ ; > ~ ( ~  - &crk,) ( 1 5 )  
(Y 

contains the sharp quasi-particle dispersion relation via the b-function and its diagonal 
part in coordinate space determines the local density of states (LDOS) 

X (hw - E,)-' / 'e(hw - E , ) .  (16) 
The latter shows the inverse square root behaviour with singularities at the bottoms of 
subbands characteristic of Q1D systems without scattering. 

If scattering is present in the system, the retarded and advanced equilibrium Green 
functions obey the Dyson equation 

Within our scattering model the self-energy is local in the transverse direction and 
independent of k, in the self-consistent Born approximation: 

where 

(GEq)-'G3A = 1 + X:eRq/AG?A. 

~ ? / ~ ( w ;  r l ,  r ; )  = 6(r l  - r k ) i 3 A ( w ;  r l )  

(17) 

(18) 

(19) 
g 

e ? / A ( m ;  rl) = 9 G'R9/A(kx 7 w ;  rl ? r l ) .  
k x  

If no current flows from transverse to the wire, the Green functions are symmetric in the 
coordinates rl and r ;  and the equilibrium spectral function is given by 

Furthermore one has 

Similar relations hold for the self-energy and 

is the scattering rate which determines the level broadening and depends upon the 
transverse position r l .  The LDOS in the presence of scattering given by 

Aeq(k , ,  w ;  r l ,  r ; )  = -2  Im G 2 ( k , ,  w ;  r l ,  1-1). 

G e q ( k , ,  w ;  r l ,  r ; )  = Re G?(k,,  w ;  r l ,  r ; ) .  

f e q ( w ; r L )  = -21m22(w;r l )  (22) 

(20) 

(21) 

is directly proportional to the scattering rate: 

The equilibrium correlation functions are 

and 

f,, ( w ;  r l )  = (JGg/h)P(W r1). 

G : q ( ~ x , w ; r , , r ; )  =iAeq(k,,w;rl,r;>fo(w) 

%,(o; r l )  = i f,,(w r l ) fo(w)  
with the Fermi distribution functionfo(w). 
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Figure 2. LDOS in a quantum wire at different 
positions r, ((a) (0.5 Ly, 0.23 Lz);  (b)  (0.5 Ly, 
0.33 L J ;  ( c )  (0.5 L,, 0.5 L,)) for three different 
scattering strengths /3 = 0.01 (-), /3 = 0.1 
(--) andp  = 1 (---). 

,-..I. --'-..- rii;;---".--- 
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The Dyson equation (17), together with the functional dependence of the self-energy 
on the Green function as specified by equations (18) and (19), represents a set of 
equations which has to be solved self-consistently. In contrast with the bulk situation 
(Mahan 1987), the inhomogeneity in the transverse direction does not permit an exact 
formal solution for G R / A  by Fourier transformation. A possible representation is an 
expansion with respect to the subband wavefunctions qa(ri)  which reflect the symmetry 
of the confining potential Vc(rL).  Usually, the self-energy Z,,, is approximated by its 
diagonal part (cf Kearney and Butcher 1987). The symmetry imposed by the confining 
potential is changed owing to interference between scattering and confinement, i.e. 
non-diagonal elements of Z,, are not necessarily negligible. We retain the diagonal 
approximation but include the change in symmetry by a parametric dependence of the 
self-energy on the transverse position. For GeR4/A(ri, ri) our ansatz reads 

GeR4/A(kx, 0; ri , r.L) = q i ( r i )  [CO - E a k ,  - e " R 9 / ( C O ;  r1)I-l. (27) 
a 

Note that this expression is consistent with equation (19). It is especially suited to the 
extremely short-range scattering mechanism considered here. 

Using relation (27) the integral over kx in equation (19) may be carried out analyti- 
cally. The resulting implicit equation for &/A is solved iteratively for each rl and CO. A 
regularisation procedure has to be employed in order to avoid unphysical contributions 
from large momenta to the real part of the self-energy (Serene and Rainer 1983). An 
additional valence band with the same effective mass has been introduced in order to 
cancel these contributions. This procedure does not affect level broadening. 

Results for the LDOS are shown in figure 2 for several scattering strengths as specified 
by the dimensionless quantity p = hriD/2EP). The Boltzmann scattering rate 
riD = mg/h3 L,  refers to a Q ~ D  system of thickness L, in the x-z plane in the electric 
quantum limit. The quantity E?) is the energy of the first subband for hard-wall bound- 
aries in the z direction and serves as energy unit in the following. For a typical width of 
the QiD channel (I,, % 500 A), Ep)  -- 2 meV and /3 1 corresponds to a mobility piD of 
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5 x io3 cm2 v-'s-l in the reference system (low-mobility samples) whereas p = 0.01 
(high-mobility Sam les). Throughout our cal- means that piD = 5 X lo5 cm2 V-' s-' 

culation we have chosen wire dimensions of 100 8, X 500 . The energy range up to 
7 0 E f )  covers the first subband in they direction and six subbands in the z direction and 
encloses carrier concentrations up to 10" cm-2 in the 2D reference structure. In the 
energy range between 30Ef) and 70Ep),  k;DliD = 2ECD/hI'iD = 2-20 for /3 = 1 and 
kgD1iD = 2 x lo2-2 x lo3 for /3 = 0.01 at T = 0 where liD = ugD/I'iD is the Boltzmann 
mean free path in the 2D system, EtD is the Fermi energy measured from the first 2~ 
subband, E{ = n2h2/2m*L;,  and kCD and ugD are the Fermi wavevector and velocity, 
respectively. This enables us to neglect strong-localisation effects in the above energy 
range for /3 S 1. 

Figure 2 shows that the sharp peaks characteristic for the DOS of ideal QiD wires are 
still present for high-mobility samples. In contrast, for structures with a low mobility 
typical of Si MOSFETS the peaks smear out and the DOS becomes similar to the 2~ case. 
Renormalisation of the spectrum due to scattering manifests itself mainly in a rigid 
downshift in energy. The LDOS reflects directly the symmetry of the subband 
wavefunctions and contains position-dependent contributions of different subbands. 

Using the relation 

w 

where P2D = m*/nh2L, is the DOS of the 2~ reference system; the local scattering rate 
may be obtained from figure 2. This permits comparison with experimental data, at least 
if scattering is short ranged. 

5. Conductance 

Generally, equations (5) and (6) possess a complicated structure because of the inte- 
gration over internal space and time variables in each matrix product. Furthermore, 
the Dyson equation (6)  becomes field dependent. The electric field introduces an 
inhomogeneity along the direction even in a homogeneous system. Therefore, it is 
convenient to eliminate the explicit dependence on the centre-of-mass coordinate 
(x + x')/2. This is always possible for a constant field via the transformation (Mahan 
1987) 

SZ = o + (eF,/h)[(x + x')/2] (29) 
which considers the energy gain of a charge carrier caused by the field by tilting the 
spectrum. 

The Fourier-transformed product of two quantities can be represented as 

c 

a ' )] B(k , ,  R; F'i, r'J x exp [- - (-- - -- i eF, 
2 n anak, ak,asz 

in a stationary case and for a system homogeneous in the x direction. The arrows indicate 
that derivatives act to the left or to the right, respectively. Linear response requires 
consideration of the first two terms in an expansion of the exponent in equation (30). 
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This means that in a linear response a rigorous solution is obtained by the gradient 
expansion often used in quantum transport theory for slowly varying disturbances 
(Kadanoff and Baym 1962). Note that no gradient expansion has been performed in the 
transverse direction. 

Current flow in the x direction and the extremely short-range scattering mechanism 
further simplify the expressions since only quantities diagonal in the transverse position 
rl are necessary. In this case, equation (6) with anticommutators leads to the relation 

(eFx/h){[l- (a/a )eR (a;  rl )](e/ak~) + U,( ) IGR ( k ~  > Qir1 7 rl ) 0 (31) 

for the diagonal retarded function. The equilibrium Dyson equation follows from 
equation (6) for commutators up to corrections quadratic in electric field. We conclude 
similar to the bulk case (Mahan 1987) that the retarded Green function diagonal in the 
transverse position rl has no contributions linear in the electric field: 

in the stationary case and for a system homogeneous in the x direction. Relation (32) 
does not hold generally for the non-diagonal part in the transverse direction which would 
give rise to additional terms in the conductance for non-local scattering. 

Next, equation ( 5 )  is treated in an analogous way, yielding an expression for the 
correlation function 6G'(kx Q, rl rl) linear in the electric field. The procedure is 
similar to that performed in the bulk case (Mahan 1987), The resulting equation contains 
contributions proportional to the Fermi function itself in addition to the usual terms 
proportional to its derivative. Taking the imaginary part of equation (31) it can be shown 
that the contributions proportional to the Fermi function cancel each other exactly. Note 
that this is a consequence of taking into account the renormalisation terms in equation 
( 5 ) .  For isotropic scattering, vertex corrections to the conductance disappear, i.e. the 
last anticommutator on the right-hand side of equation ( 5 )  possesses no term linear in 
the electric field. In the Boltzmann theory this is equivalent to coincidence of the inverse 
scattering rate and transport relaxation time. As a result, 6G' can be expressed as 

6G'(kX,Q;r,, rl)=i(eF,/h)[-af,(n)/aQ]i.,;:(n; rl) 

@{uxAeq(kx,Q;rl7 rl>-i.,q(~~;r,)(a/ak,)[Re~e,4(kxt~;ri7 r1)1>* 
(33) 

Using the relation between conductance and correlation function in the form 

we find for the conductance of a quantum wire 

h 
@ [ u ? ~ e q ( k . r , ~ ; r l 7  rl)+-feq(Q;rl)  m* ~ e ~ R ( k x  

This is the central analytical result of the paper. It is justified E the system can be 
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considered homogeneous in wire direction and if the self-energy is a local quantity. 
Equation (35) coincides with the result from the Kubo-Greenwood formula 

e2 
G Qw = - 2 ( - F) d 'rl d 2r'l ",A eq ( k ,  , S2 ; ri , r; ) U ,  A eq ( k ,  , S2 ; r; , r ) . 

hLx k,Q 
(36) 

The expression obtained by Kearney and Butcher (1987) is recovered if a subband 
expansion for the spectral function is carried out in equation (36) with subsequent 
diagonal approximation in subband indices. Equation (3.9, however, is better suited to 
apply the ansatz (27) since it contains quantities diagonal in the transverse position ri 
only. 

We complete this section with a discussion of the Boltzmann limit for weak scattering. 
In this case we retain the most divergent terms in equation (35). The self-consistent 
inverse scattering rate is replaced by its first iteration fB1 proportional to the DOS 
calculated from equation (16). The spectral function approaches its value without 
scattering (equation (15)). No divergence arises from the term proportional to the real 
part of the Green function and this term can be neglected. The quantity fG1 is the 
position-dependent relaxation time in the Boltzmann theory as analysed by Ziep et a1 
(1986) and by Pratsch and Suhrke 1988,1989) for the Q2D case. It can be easily verified 
that 

with the subband relaxation time 

Za(Eek,)  = d 2 r L  qi(rl)f<l(Eak,;rl)* (38) 

It should be noted that equation (38) differs from the usual results of the Boltzmann 
theory for low-dimensional systems based on Fermi's golden rule for the transition 
probability (Ando et a1 1982). In this case the inverse subband relaxation time 

r , l ( E n k , )  = / d2rl q i ( r l ) f B ( E e k y k , ;  rl) (39) 
A 

arises from integration over the cross section already in the transport equation. This 
may lead to remarkable differences in the dependence of conductance on temperature 
and carrier concentration (Ziep et a1 1986, Pratsch and Suhrke 1988,1989). 

6.  Results and discussion 

The position-dependent conductance including the self-consistent level broadening is 
shown in figure 3 for the same sequence of parameters as in figure 2 and for zero 
temperature. The conductance is measured in units of (e2//3h)(Ly/L,). The length- 
dependent factor has been introduced in order to obtain an intensive quantity. The 
conductance unit e2//3h is related to the two-dimensional reference system again and is 
simply its Boltzmann conductance multiplied by The position dependence of 
the conductance is a reminiscent of the inhomogeneous distribution of charge carriers 
over the cross section as discussed in section 4. 
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Figure 3. Position-dependent contributions to 
conductance for the same parameters as in figure 
2 ( T  = 0 K). 
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1 30 50 70 
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Figure 4. (a )  Conductance and ( b )  number of carriers for a quantum wire and (c) the total 
DOS for three different scattering strengths. 

Figure 4 shows the dependences of the total conductance and the number of carriers 
in the wire per length unit (which both depend on the Fermi energy) and the averaged 
DOS on E / E f )  for the same parameters as above. For weak scattering (p  = 0.01-0.1) 
the conductance exhibits strong oscillations with the Fermi energy known from the 
Boltzmann theory. This QiD behaviour is also seen in the carrier concentration and DOS. 
The oscillations disappear almost completely for strong scattering and the physics 
become nearly like those in a 2D system. This is especially pronounced in the low-energy 
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Figure 5. Influence of width fluctuations on the 
conductance for an array of quantum wires as 
shown by the conductance versus Fermi energy 
plots for RMS deviations fron L, = 500 8, of ( a )  
2%, (b )5%and(c ) lO%(p=O. l ;T=OK) .  

10 L 20 30 40 50 60 70 

E ~ I E ‘ ; ’  

Figure 6.  Influence of finite temperature on the 
conductance of a quantum wire for ( a )  T = 0 K, 
( b ) T = 4 . 2 K a n d ( c ) T =  lOK(p=O.l) .  

region where the level broadening is of the same order of magnitude as subband 
separation. As a result, scattering-induced level broadening limits the observation of 
QsEs in low-mobility (pCLzD S lo4 cm2 V-’ s-l s amples (Warren et a1 1986, Kastner et a1 
1987). 

QSES are expected to dominate in arrays of parallel channels obtained by the grating- 
gate technique (Warren et a1 1986) because sample-specific universal fluctuations are 
averaged out. On the other hand, conductance oscillations due to the confinement 
should become less pronounced, too, because of the differences in properties from wire 
to wire. The influence of width fluctuations is analysed in figure 5 under otherwise ideal 
conditions (high-mobility sample at zero temperature). The channel widths L, in the 
grating direction are assumed to be normally distributed around the average value of 
500 A. Fluctuations of only 2% lead to a significant reduction in size effects. They vanish 
almost completely for fluctuations of about 10%. This value coincides with estimations 
from experiments on silicon MOSFETS (Warren et a1 1986). Characteristic values for 
GaAs/Gal-,Al,As heterostructures are 5% (Smith et a1 1987). 

Finally, figure 6 shows that , under proper conditions, confinement-induced oscil- 
lations of conductance are clearly resolved for temperatures up to 10 K, i.e. if thermal 
broadening is smaller than level spacing. 

Generally, our results confirm that QSES are observable if the characteristic broad- 
ening in energy does not exceed the level spacing. 

We conclude with some remarks on the applicability of our calculations. They are 
suited to the structures used in recent experiments (Warren et a1 1986, Smith et aZl987, 
Alsmeier et a1 1988, Brinkop et aZ 1988). In these structures obtained by the grating 
technique, always a sufficient number of Q1D subbands is occupied and the conditions 
mentioned in the introduction are fulfilled. Structures imposed on silicon inversion 
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layers are not such good candidates for observation of subband structure because of 
their low mobility. Samples based on 111-V compounds, on the other hand, possess a 
higher mobility and a lower effective mass, leading to a larger subband spacing which 
makes QSES more accessible. 
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